Tom Hudson Seismologist

My Expertise

profile

I am a seismologist, focussed on applying novel technologies to shed light on Earth systems that are particularly pertinent for society. I'm currently particularly excited about harnessing the potential of fibreoptic sensing and seismic nodes to study glacier processes and new ways of exploring for critical minerals.

Work Experience

2024 - present     Department of Earth and Planetary Sciences, ETH Zurich, Switzerland
Oberassistent
2022 - 2024     Department of Earth Sciences, University of Oxford, UK
Leverhulme Early Career Fellow
2023 - 2024     St Cross College, Oxford, UK
Junior Research Fellow
2022 - 2023     Exeter College, Oxford, UK
Stipendiary Lecturer
2020 - 2022     Department of Earth Sciences, University of Oxford, UK
Postdoctoral Research Associate
2019 - 2020     Metrol Technology Ltd
Research Scientist

Education

2015 - 2019     University of Cambridge and British Antarctic Survey, UK
PhD in Earth Sciences (seismology)
2012 - 2015     University of Durham, UK
Master of Physics (MPhys)
2010 - 2012     University of Bath, UK
Mechanical Engineering

Featured Projects

plane_on_ice

Fibreoptic sensing on glaciers

Fibreoptic sensing provides orders-of-magnitude denser sampling than conventional seismic instrumentation. I am using this far denser sampling to study how Antarctic ice streams slide through to how alpine glaicers fracture. Glaciers also provide an ideal test environment for developing new data analysis methods, since ice is a simpler medium than rock. I am capitalising on this to develop a number of methods for harnessing the power of fibreoptic sensing technology.

Check it out
mountains

Addressing fibreoptic sensing challenges

While fibreoptic sensing is an exciting new technology within the field of seismology, challenges remain for fully realising its potential. I am working on new methods for earthquake detection, how to use amplitude information and seismic source inversion.

Check it out
mountains

Critical mineral exploration

Critical minerals are needed for manufacturing numerous technologies essential for driving the green energy transition, from batteries to magnets. I am working on developing geophysical tools to explore for these minerals in collaboration with various collegues internationally. Excitingly, some of these methods can be used to find entirely new prospects that are far less damaging for the planet, for example metal-rich brines in geothermal systems.

Check it out
mountains

Seismic nodes for geothermal exploration

Seismic nodes provide a step-change in how many instruments we can deploy, allowing for denser deployments at lower cost than conventional methods. I am working on various methods to capitalise on this new technology, particularly with regard to adapting existing methods to work with the much larger number of receivers and hence data volumes.

Check it out

Publications

Peer-reviewed

  1. Hudson, T. S., Kettlety, T., Kendall, J., Toole, T. O., Jupe, A., Shail, R. K., & Grand, A. (2024). Seismic Node Arrays for Enhanced Understanding and Monitoring of Geothermal Systems. The Seismic Record, 161–171. doi:10.1785/0320240019 [link]
  2. Gauntlett, M., Stephenson, S. N., Kendall, J. M., Ogden, C., Hammond, J. O. S., Hudson, T., et al. (2024). The Dynamic Crust of Northern Afar and Adjacent Rift Margins: New Evidence From Receiver Function Analysis in Eritrea and Ethiopia. Geochemistry, Geophysics, Geosystems, 25(6). doi:10.1029/2023GC011314 [link]
  3. Lapins, S., Butcher, A., Kendall, J.-M., Hudson, T. S., Stork, A. L., Werner, M. J., et al. (2023). DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophysical Journal International, 236(2), 1026–1041. doi:10.1093/gji/ggad460 [link]
  4. Marshall, N., Ou, Q., Begenjev, G., Bergman, E., Bezmenov, Y., Dodds, N., Gruetzner, C., Hudson, T.S., et al. (2024). Seismotectonic aspects of the Ms 7.3 1948 October 5th Aşgabat (Ashgabat) earthquake, Türkmenistan: right-lateral rupture across multiple fault segments, and continuing urban hazard. Geophysical Journal International. doi:10.1093/gji/ggad488 [link]
  5. Hudson, T.S., Kufner, SK., Brisbourne, A.M., Kendall, JM., Smith, A M., Arthern, R., Alley, R., Murray, T.. (2023) Friction and slip measured at the bed of an Antarctic ice stream. Nature Geoscience. doi:10.1038/s41561-023-01204-4 [link]
  6. Hudson, T.S., Kendall, J.-M., Blundy, J.D.,Pritchard, M.E., MacQueen, P., Wei, S.S., Gottsmann, J., Lapins, S.. (2023). Hydrothermal fluids and where to find them: Using seismic attenuation and anisotropy to map fluids beneath Uturuncu volcano, Bolivia. Geophysical Research Letters. doi:10.1029/2022GL100974 [link]
  7. Hudson, T. S., Brisbourne, A. M., Kufner, S., Kendall, J.-M., & Smith, A. M. (2023). Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream. The Cryosphere, 17(11), 4979–4993. doi:10.5194/tc-17-4979-2023 [link]
  8. Hudson, T. S., Asplet, J., & Walker, A. M. (2023). Automated shear-wave splitting analysis for single- and multi- layer anisotropic media. Seismica. doi:10.31223/X5R67Z [link]
  9. Kufner, SK., Wookey, J., Brisbourne, A.M., Garcia, C.M., Hudson, T.S., Kendall, MK., Smith, A.M.. (2023). Constraining ice fabric in a fast-flowing Antarctic ice stream using icequakes. Journal of Geophysical Research: Earth Surface. doi:10.1029/2022JF006853 [link]
  10. Gauntlett, M., Hudson, T.S., Kendall, J. M., Rawlinson, N., Blundy, J., Lapins, S., et al. (2023). Seismic Tomography of Nabro Caldera, Eritrea: Insights Into the Magmatic and Hydrothermal Systems of a Recently Erupted Volcano. Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025742 [link]
  11. Hudson, T.S., Kendall, J.-M., Pritchard, M.E., Blundy, JD, & Gottsmann, J. (2022). From slab to surface: Earthquake evidence for fluid migration at Uturuncu volcano, Bolivia. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2021.117268 [link]
  12. Lanza, F., Roman, D.C., Power, J.A., Thurber, C.H., Hudson, T.S. (2022) Complex magmatic-tectonic interactions during the 2020 Makushin Volcano , Alaska , earthquake swarm. Earth and Planetary Science Letters. https://doi.org/10.1002/essoar.10506629.1 [link]
  13. Hudson, T.S., Kendall, JM., Kufner, SK., Brisbourne, A.M., Smith, AM. Chalari A. & Clarke A. (2021). Distributed acoustic sensing (DAS) for microseismicity studies: A case study from Antarctica. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2020jb021493 [link]
  14. Brisbourne, A.M., Kendall, J.-M., Kufner, S.-K., Hudson, T.S., Smith, A.M., Chalari, A., Clarke, A. (2021). Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica. Cryosphere. https://doi.org/10.5194/tc-2021-1 [link]
  15. Kufner, S.-K., Brisbourne, A. M., Smith, A. M., Hudson, T.S., Murray, T., Schlegel, R., Kendall, JM (2021). Not all icequakes are created equal: Diverse bed deformation mechanisms at Rutford Ice Stream, West Antarctica, inferred from basal seismicity. Journal of Geophysical Research: Earth Surface Earth Surface. https://doi.org/10.1029/2020JF006001 [link]
  16. Hudson, T.S., Brisbourne, A.M., White, R.S., Kendall, JM., Arthern, R., & Smith, A.M. (2020). Breaking the ice: How to identify hydraulically-forced crevassing. Geophysical Research Letters. https://doi.org/10.1029/2020GL090597 [link]
  17. Hudson, T.S., Brisbourne, A.M., Walter, F., Graff, D., & White, R. S. (2020). Icequake source mechanisms for studying glacial sliding. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2020JF005627 [link]
  18. Brisbourne, A., Kulessa, B., Hudson, T.S., Harrison, L., Holland, P., Luckman, A., Bevan, S., Ashmore, D., Hubbard, B., Pearce, E., White, J., Booth, A., Nichols, K., & Smith, A. (2020). An updated seabed bathymetry beneath Larsen C Ice Shelf, west Antarctic. Earth System Science Data, 12, 887–896. https://doi.org/10.5194/essd-12-887-2020 [link]
  19. Hudson, T.S., Smith, J., Brisbourne, A., & White, R. (2019). Automated detection of basal icequakes and discrimination from surface crevassing. Annals of Glaciology, 60(79), 1–11. https://doi.org/10.1017/aog.2019.18 [link]
  20. Woods, J., Donaldson, C., White, R. S., Caudron, C., Brandsdóttir, B., Hudson, T.S., & Ágústsdóttir, T. (2018). Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014–15 Bárðarbunga rifting event, Iceland. Earth and Planetary Science Letters, 490, 216–229. https://doi.org/10.1016/j.epsl.2018.03.020 [link]
  21. Hudson, T. S., White, R. S., Greenfield, T., Ágústsdóttir, T., Brisbourne, A., & Green, R. G. (2017). Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophysical Research Letters, 44(17), 8785–8794. https://doi.org/10.1002/2017GL074749 [link]
  22. Hudson, T. S., Horseman, A., & Sugier, J. (2016). Diurnal, seasonal, and 11-yr solar cycle variation effects on the virtual ionosphere reflection height and implications for the Met Office’s lightning detection system, ATDnet. Journal of Atmospheric and Oceanic Technology, 33(7), 1429–1441. https://doi.org/10.1175/JTECH-D-15-0133.1 [link]

Invited viewpoints/perspectives/review papers:

In review